题目内容
绝对值大于1而小于4的整数有 个.
(6分)如图,在菱形ABCD中,对角线AC、BD相交于点O,E是AB的中点,如果EO=2,求四边形ABCD的周长.
若关于x的方程mxm﹣2﹣m+3=0是一元一次方程,则这个方程的解是( )
A.x=0 B.x=3 C.x=﹣3 D.x=2
如图反映的是地球上七大洲的面积占陆地总面积的百分比,小明根据如图得出了
下列四个结论:
①七大洲中面积最大的是亚洲;
②南美洲、北美洲、非洲三大洲的面积和约占陆地总面积的50%;
③非洲约占陆地总面积的20%;
④南美洲的面积是大洋洲面积的2倍.
你认为上述四个结论中正确的应该是( )
A.①② B.①④ C.①②④ D.①②③④
已知某校的女生占全体学生人数的52%且比男生多80人.若设这个学校的全体学生人数为x,则可列出方程 .
(9分)如图,在正方形ABCD中,点E在边AD上,点F在边BC的延长线上,连结EF与边CD相交于点G,连结BE与对角线AC相交于点H,AE=CF,BE=EG.
(1)求证:EF∥AC;
(2)求∠BEF大小;
(3)求证:
如图,正方形ABCD和正方形CEFG中,点D在CG上,BC=1,CE=3,H是AF的中点,那么CH的长是 .
(12分)如图,已知抛物线的顶点坐标为M,与x轴相交于A,B两点(点B在点A的右侧),与y轴相交于点C.
(1)用配方法将抛物线的解析式化为顶点式:(),并指出顶点M的坐标;
(2)在抛物线的对称轴上找点R,使得CR+AR的值最小,并求出其最小值和点R的坐标;
(3)以AB为直径作⊙N交抛物线于点P(点P在对称轴的左侧),求证:直线MP是⊙N的切线.
已知实数,满足,,则以,为根的一元二次方程是( )
A. B. C. D.