题目内容

已知a3±b3=(a±b)(a2±ab+b2),如果一列数a1,a2,…满足对任意的正整数n都有a1+a2+…an=n3,则
1
a2-1
+
1
a3-1
+…
1
a100-1
的值为(  )
分析:令n=1、2、3…,求出a1,a2,…的值,在表示出a2-1,a3-1,…从而得出规律,再提取
1
3
后利用拆项法解答.
解答:解:根据题意,当n=1时,a1=13=1,
当n=2时,a1+a2=23,a2=23-1=7,
所以a2-1=7-1=6=3×(1×2),
当n=3时,a1+a2+a3=33,a3=33-23=19,
所以a3-1=19-1=18=3×(2×3),
当n=4时,a1+a2+a3+a4=43,a4=43-33=37,
所以a4-1=37-1=36=3×(3×4),

a100=1003-993
=(100-99)×(1002+100×99+992
=1002+100×(100-1)+(100-1)2
=1002+1002-100+1002-200+1
=3×1002-300+1,
所以a100-1=3×1002-300+1-1=100×(300-3)=100×297=3×(99×100),
1
a2-1
+
1
a3-1
+…+
1
a100-1

=
1
3(1×2)
+
1
3(2×3)
+
1
3(3×4)
+…+
1
3(99×100)

=
1
3
1
1
-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
+…+
1
99
-
1
100

=
1
3
×(1-
1
100

=
1
3
×
99
100

=
33
100

故选A.
点评:本题考查了分式的混合运算,令n=1、2、3…,分别求出a2-1,a3-1,a4-1,…,a100-1并发现规律是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网