题目内容
18.已知(a+b)2=8,(a-b)2=5,则a2+b2=6.5,ab=0.75.分析 已知两式利用完全平方公式化简,相加减即可求出所求式子的值.
解答 解:∵(a+b)2=a2+2ab+b2=8①,(a-b)2=a2-2ab+b2=5②,
∴①+②得:2(a2+b2)=13,①-②得:4ab=3,
解得:a2+b2=6.5,ab=0.75,
故答案为:6.5;0.75
点评 此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.
练习册系列答案
相关题目
13.下列统计中,适宜全面调查的是( )
| A. | 检测某城市的空气质量 | B. | 调查全国初中生的视力情况 | ||
| C. | 审查某篇文章的错别字 | D. | 调查某池塘中现有鱼的数量 |
7.如图1,将边长为1的正方形ABCD压扁为边长为1的菱形ABCD.在菱形ABCD中,∠A的大小为α,面积记为S.

(1)请补全表:
(2)填空:
由(1)可以发现单位正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把单位菱形的面积S记为S(α).例如:当α=30°时,S=S(30°)=$\frac{1}{2}$;当α=135°时,S=S(135°)=$\frac{{\sqrt{2}}}{2}$.由上表可以得到S(60°)=S(120°);S(150°)=S(30°),…,由此可以归纳出S(180°-α)=(α°).
(3)两块相同的等腰直角三角板按图2的方式放置,AD=$\sqrt{2}$,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).
(1)请补全表:
| α | 30° | 45° | 60° | 90° | 120° | 135° | 150° |
| S | $\frac{1}{2}$ | 1 | $\frac{{\sqrt{2}}}{2}$ |
由(1)可以发现单位正方形在压扁的过程中,菱形的面积随着∠A大小的变化而变化,不妨把单位菱形的面积S记为S(α).例如:当α=30°时,S=S(30°)=$\frac{1}{2}$;当α=135°时,S=S(135°)=$\frac{{\sqrt{2}}}{2}$.由上表可以得到S(60°)=S(120°);S(150°)=S(30°),…,由此可以归纳出S(180°-α)=(α°).
(3)两块相同的等腰直角三角板按图2的方式放置,AD=$\sqrt{2}$,∠AOB=α,试探究图中两个带阴影的三角形面积是否相等,并说明理由(注:可以利用(2)中的结论).