题目内容
某商场“六一”期间进行一个有奖销售的促销活动,设立了一个可以自由转动的转盘,并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:| 转动转盘的次数n | 100 | 200 | 400 | 500 | 800 | 1000 |
| 落在“可乐”区域的次数m | 60 | 122 | 240 | 298 | 604 | |
| 落在“可乐”区域的频率 | 0.6 | 0.61 | 0.6 | 0.59 | 0.604 |
(2)请估计当n很大时,频率将会接近______;假如你去转动该转盘一次,你获得“可乐”的概率约是______;(结果全部精确到0.1)
(3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少?(结果精确到1°)
【答案】分析:(1)根据频率公式可以计算空格要填的数据;
(2)实验次数越多,频率越接近概率,所以填0.6,0.6;
(3)由可乐的频率可以知道车模的概率是0.4,从而求出圆心角的度数.
解答:解:(1)如下表:
(2)当n很大时,频率将会接近0.6;获得的概率约是0.6;
(3)由可乐的频率可以知道车模的概率是0.4,从而求出圆心角的度数是360°×0.4=144°.
点评:用到的知识点为:频率=所求情况数与总情况数之比.部分的具体数目=总体数目×相应频率.频率接近于理论上概率的值.
(2)实验次数越多,频率越接近概率,所以填0.6,0.6;
(3)由可乐的频率可以知道车模的概率是0.4,从而求出圆心角的度数.
解答:解:(1)如下表:
| 转动转盘的次数n | 100 | 200 | 400 | 500 | 800 | 1000 |
| 落在“可乐”区域的次数m | 60 | 122 | 240 | 298 | 472 | 604 |
| 落在“可乐”区域的频率 | 0.6 | 0.61 | 0.6 | 0.596 | 0.59 | 0.604 |
(3)由可乐的频率可以知道车模的概率是0.4,从而求出圆心角的度数是360°×0.4=144°.
点评:用到的知识点为:频率=所求情况数与总情况数之比.部分的具体数目=总体数目×相应频率.频率接近于理论上概率的值.
练习册系列答案
相关题目
某商场“六一”期间进行一个有奖销售的促销活动,设立了一个可以自由转动的转盘,并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:
(1)计算并完成上述表格;
(2)请估计当n很大时,频率将会接近______;假如你去转动该转盘一次,你获得“可乐”的概率约是______;(结果全部精确到0.1)
(3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少?(结果精确到1°)

| 转动转盘的次数n | 100 | 200 | 400 | 500 | 800 | 1000 |
| 落在“可乐”区域的次数m | 60 | 122 | 240 | 298 | 604 | |
| 落在“可乐”区域的频率 | 0.6 | 0.61 | 0.6 | 0.59 | 0.604 |
(2)请估计当n很大时,频率将会接近______;假如你去转动该转盘一次,你获得“可乐”的概率约是______;(结果全部精确到0.1)
(3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少?(结果精确到1°)
某商场“六一”期间进行一个有奖销售的促销活动,设立了一个可以自由转动的转盘,并规定:顾客购物100元以上就能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品(若指针落在两个区域的交界处,则重新转动转盘).下表是此次促销活动中的一组统计数据:
(1)计算并完成上述表格;
(2)请估计当n很大时,频率将会接近______;假如你去转动该转盘一次,你获得“可乐”的概率约是______;(结果全部精确到0.1)
(3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少?(结果精确到1°)

| 转动转盘的次数n | 100 | 200 | 400 | 500 | 800 | 1000 |
| 落在“可乐”区域的次数m | 60 | 122 | 240 | 298 | 604 | |
| 落在“可乐”区域的频率 | 0.6 | 0.61 | 0.6 | 0.59 | 0.604 |
(2)请估计当n很大时,频率将会接近______;假如你去转动该转盘一次,你获得“可乐”的概率约是______;(结果全部精确到0.1)
(3)在该转盘中,表示“车模”区域的扇形的圆心角约是多少?(结果精确到1°)