题目内容
已知三个边长分别为2、3、5的正方形如图排列,则图中阴影部分面积为 .
某校的校园内有一个由两个相同的正六边形(边长为2.5m)围成的花坛,如图中的阴影部分所示,校方先要将这个花坛在原有的基础上扩建成一个菱形区域如图所示,并在新扩充的部分种上草坪,则扩建后菱形区域的周长为( )
A.20m B.25m C.30m D.35m
如图,已知⊙O的直径AB与弦CD相交于点E,AB⊥CD,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF;
(2)若⊙O的半径为5,cos∠BCD=,求线段AD的长.
我国古代数学家利用“牟合方盖”(如图甲)找到了球体体积的计算方法.“牟合方盖”是由两个圆柱分别从纵横两个方向嵌入一个正方体时两圆柱公共部分形成的几何体.图乙所示的几何体是可以形成“牟合方盖”的一种模型,它的主视图是( )
如图,正方形ABCD、正方形A1B1C1D1和正方形A2B2C2D2均位于平面直角坐标系的第一象限内,它们的边平行于x轴或y轴,其中点A,A1,A2在直线OM上,点C,C1,C2在直线ON上,O为坐标原点,已知点A的坐标为(3,3),正方形ABCD的边长为1.
(1)求直线ON的函数解析式;
(2)若点C1的横坐标为4,求正方形A1B1C1D1的边长;
(3)若正方形A2B2C2D2的边长为m,则点B2的坐标为 .(用含字母m的代数式表示.
下列四个函数图象中,当x>0时,y随x的增大而增大的是( )
在△ABC中,点D、E、F分别在BC、AB、CA上,且DE∥CA,DF∥BA,则下列三种说法:
①如果∠BAC=90°,那么四边形AEDF是矩形
②如果AD平分∠BAC,那么四边形AEDF是菱形
③如果AD⊥BC且AB=AC,那么四边形AEDF是菱形
其中正确的有( )
A.3个 B.2个 C.1个 D.0个
如图,OA=OB=6cm,线段OB从与OA重合的位置开始沿逆时针方向旋转120°,在旋转过程中,设AB的中点为P(当OA与OB重合时,记点P与点A重合),则点P运动的路径长为( )
A.6cm B.4πcm C.2πcm D.3cm
在四个数0,-2,-1,2中,最小的数是( )
A.0 B.-2 C.-1 D.2