题目内容

16.以$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$为解的方程组是(  )
A.$\left\{\begin{array}{l}{x-y=-1}\\{y+3x=5}\end{array}\right.$B.$\left\{\begin{array}{l}{x-y=-1}\\{3x+y=-5}\end{array}\right.$C.$\left\{\begin{array}{l}{x-y=3}\\{3x-y=1}\end{array}\right.$D.$\left\{\begin{array}{l}{x-2y=-3}\\{y-3x=5}\end{array}\right.$

分析 根据方程组的解的定义,只要检验$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$是否是选项中方程的解即可.

解答 解:A、把$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$代入方程x-y=-1,左边=-1=右边,把$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$代入方程y+3x=5,左边=5=右边,故是方程组的解,故选项正确;
B、把$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$代入方程3x+y=-5,左边=5≠右边,故不是方程组的解,故选项错误;
C、把$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$代入方程x-y=3,左边=-1≠右边,故不是方程组的解,故选项错误;
D、把$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$代入方程y-3x=5,左边=-1≠右边,故不是方程组的解,故选项错误.
故选:A.

点评 本题主要考查了二元一次方程组的解的定义,正确理解定义是关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网