题目内容
.已知,点P是直角三角形ABC斜边AB上一动点(不与A,B重合),分别过A,B向直线CP作垂线,垂足分别为E,F,Q为斜边AB的中点.
(1)如图1,当点P与点Q重合时,AE与BF的位置关系是__________,QE与QF的数量关系式__________;
(2)如图2,当点P在线段AB上不与点Q重合时,试判断QE与QF的数量关系,并给予证明;
(3)如图3,当点P在线段BA(或AB)的延长线上时,此时(2)中的结论是否成立?请画出图形并给予证明.
![]()
【考点】全等三角形的判定与性质;直角三角形斜边上的中线.
【专题】压轴题.
【分析】(1)证△BFQ≌△AEQ即可;
(2)证△FBQ≌△DAQ,推出QF=QD,根据直角三角形斜边上中线性质求出即可;
(3
)证△AEQ≌△BDQ,推出DQ=QE,根据直角三角形斜边上中线性质求出即可.
【解答】解:(1)AE∥BF,QE=QF,
理由是:如图1,∵Q为AB中点,
∴AQ=BQ,
∵BF⊥CP,AE⊥CP,
∴BF∥AE,∠BFQ=∠AEQ=90°,
在△BFQ和△AEQ中
![]()
∴△BFQ≌△AEQ(AAS),
∴QE=QF,
故答案为:AE∥BF;QE=QF.
(2)QE=QF,
证明:如图2,延长FQ交AE于D,
∵Q为AB中点,
∴AQ=BQ,
∵BF⊥CP,AE⊥CP,
∴BF∥AE,
∴∠QAD=∠FBQ,
在△FBQ和△DAQ中
![]()
∴△FBQ≌△DAQ(ASA),
∴QF=QD,
∵AE⊥CP,
∴EQ是直角三角形DEF斜边上的中线,
∴QE=QF=QD,
即QE=QF.
(3)(2)中的结论仍然成立,
证明:如图3,
延长EQ、FB交于D,
∵Q为AB中点,
∴AQ=BQ,
∵BF⊥CP,AE⊥CP,
∴BF∥AE,
∴∠1=∠D,
在△AQE和△BQD中,
,
∴△AQE≌△BQD(AAS),
∴QE=QD,
∵BF⊥CP,
∴FQ是斜边DE上的中线,
∴QE=QF.
![]()
![]()
![]()
【点评】本题考查了全等三角形的性质和判定,直角三角形斜边上中线性质的应用,注意:①全等三角形的判定定理有SAS,ASA,AAS,SSS,②全等三角形的性质是:全等三角形的对应边相等,对应角相等.