题目内容
万州长江三桥位于万州主城区,于牌楼接到跨越长江,大桥连接长江两岸的过境公路交通和城区过江交通,具有公路桥梁和城市桥梁双重功能,桥梁主线总长2120米,把数据2120米用科学记数法表示为_____米.
已知AC⊥BC于C,BC=a,CA=b,AB=c,下列图形中⊙O与△ABC的某两条边或三边所在的直线相切,则⊙O的半径为的是( )
A. B. C. D.
如图,在正方形ABCD中,AB=2,连接AC,以点C为圆心、AC长为半径画弧,与BC的延长线交于点E,则图中弧AE的长为_____.
某商店准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.设每个定价增加x元.
(1)写出售出一个可获得的利润是多少元(用含x的代数式表示)?
(2)商店若准备获得利润6000元,并且使进货量较少,则每个定价为多少元?应进货多少个?
(3)商店若要获得最大利润,则每个应定价多少元?获得的最大利润是多少?
如图,△ABC中,∠BAC=75°,BC=7,△ABC的面积为14,D为 BC边上一动点(不与B,C重合),将△ABD和△ACD分别沿直线AB,AC翻折得到△ABE与△ACF,那么△AEF的面积最小值为_____.
对于实数x,我们规定[x]表示不大于x的最大整数,如[4]=4,[]=1,[﹣2.5]=﹣3.现对82进行如下操作:
82 []=9 []=3 []=1,这样对82只需进行3次操作后变为1,类似地,对121只需进行多少次操作后变为1( )
A. 1 B. 2 C. 3 D. 4
如图,⊙O半径为1,AB是⊙O的直径,C是⊙O上一点,连接AC,⊙O外的一点D 在直线AB上.
(1)若AC=,OB=BD.
①求证:CD是⊙O的切线.
②阴影部分的面积是 .(结果保留π)
(2)当点C在⊙O上运动时,若CD是⊙O的切线,探究∠CDO与∠OAC的数量关系.
下列运算正确的是( )
A. 3a2+a=3a3 B. 2a3•(﹣a2)=2a5 C. 4a6+2a2=2a3 D. (﹣3a)2﹣a2=8a2
已知关于x的一元二次方程有两个实数根,则k的取值范围是__________.