题目内容

3.如图,△ABC是一张顶角为120°的三角形纸片,AB=AC,BC=12,现将△ABC折叠,使点B与点A 重合,折痕为DE,则DE的长为(  )
A.1B.2C.2$\sqrt{3}$D.3

分析 根据折叠的性质,AE=BE,∠DAE=∠B=30°,又∠BAC=120°,可知∠EAC=90°,根据30°所对的直角边等于斜边的一半,可知AE=4,DE=2.

解答 解:∵∠BAC=120°,
∴∠B=∠C=30°,
根据折叠的性质,AE=BE,∠DAE=∠B=30°,
∴∠EAC=90°,
∴AE=$\frac{1}{2}$EC,
∵BC=12,
∴AE=4,
∵∠ADE=90°,∠DAE=30°,
∴DE=2.
故选:B.

点评 本题主要考查了折叠的性质、等腰三角形的性质以及30°所对的直角边等于斜边的一半,熟悉折叠的性质是解决问题的关键.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网