题目内容

用长为12m的篱笆,一边利用足够长的墙围出一块苗圃,如图,围出的苗圃是五边形ABCDE,AE⊥AB,BC⊥AB,∠C=∠D=∠E,设CD=DE=xm,五边形ABCDE的面积为Sm2,问当x取什么值时,S最大?并求出S的最大值。

解:连结EC,作DF⊥EC,垂足为F,
∵∠DCB=∠CDE=∠DEA,∠EAB=∠CBA=90°,
∴∠DCB=∠CDE=∠DEA=120°,
∵DE=CD,
∴∠DEC=∠DCE=30°,
∴∠CEA=∠ECB=90°,
∴四边形EABC为矩形,
∴DE=xm,
∴AE=6-x,DF=x,EC=

当x=4m时,S最大=12m2
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网