题目内容
【题目】已知OC是∠AOB内部的一条射线,∠AOC=30°,OE是∠COB的平分线.当∠COE=40°时,求∠AOB的度数.
解:∵OE是∠COB的平分线,
∴∠COB=________(理由:________).
∵∠COE=40°,
∴________.
∵∠AOC=________,
∴∠AOB=∠AOC+________=110°.
【答案】见解析.
【解析】试题分析:由OE为角平分线,得到∠BOC=2∠COE,由∠COE的度数求出∠COB的度数,再由∠AOC+∠BOC即可求出∠AOB的度数.
试题解析:∵OE是∠COB的平分线(已知),
∴∠COB=2∠COE(角平分线定义).
∵∠COE=40°,
∴∠COB=80°.
∵∠AOC=30°,
∴∠AOB=∠AOC+∠COB=110°.
故答案为:2∠COE;角平分线定义;∠COB=80°;30°;∠COB.
练习册系列答案
相关题目