题目内容
如果一个平行四边形和一个三角形的底和面积都相等,那么它们的高的比是( )
A、1:1 | B、1:2 | C、2:1 | D、3:1 |
分析:平行四边形的高=面积÷底,三角形的高=2面积÷底,又因“一个平行四边形和一个三角形的底和面积都相等”,据此写出它们的高的比,进一步化简比得解.
解答:解:一个平行四边形和一个三角形的底和面积都相等,那么:
平行四边形的高:三角形的高
=(平行四边形的面积÷底):(三角形的面积×2÷底)
=
:
=1:2.
答:它们的高的比是1:2.
故选:B.
平行四边形的高:三角形的高
=(平行四边形的面积÷底):(三角形的面积×2÷底)
=
平行四边形的面积 |
底 |
三角形的面积×2 |
底 |
=1:2.
答:它们的高的比是1:2.
故选:B.
点评:此题考查比的意义,也考查了平行四边形和三角形面积公式的灵活运用.
练习册系列答案
相关题目