题目内容

精英家教网如图,一个长方体的水池水深1.25米,一个水龙头要注满水池需要3.5小时.现在要在水池内设置两块与池壁平行的挡板(体积忽略不计),一块高0.8米(B点),它挡成的区域恰好容纳1小时注水量,另一块高1米(C点),它挡成的区域恰好容纳2小时的注水量.那么AB、BC、CD这三段距离之比是多少?
分析:先设出AB、BC、CD部分的底面积分别为a、b、c,进而根据“体积=底面积×高”表示出各部分的体积:AB部分水的体积是0.8a,AC部分水的体积是(a+b)×1,因为每小时的水流量一定,列出等量关系,再求连比,0.8a÷1=(a+b)×1÷2,可得a:b=5:3,因为宽相等,即长度比也为5:3;
同理求出b:c=25:16,因为每小时的水流量一定,所以(a+b+c)×1.25÷3.5=0.8a÷1,进而可得:a:c=25:16,然后求abc的连比即可.
解答:解:设AB、BC、CD部分的底面积分别为a、b、c,
则AB部分水的体积是0.8a,AC部分水的体积是(a+b)×1,因为每小时的水流量一定,
所以:0.8a÷1=(a+b)×1÷2,
         0.8a=0.5a+0.5b,
         0.3a=0.5b,
         a:b=5:3,
因为宽都相等,所以AB:BC=5:3;
同理:因为每小时的水流量一定,所以:
(a+b+c)×1.25÷3.5=0.8a÷1,
(a+0.6a+c)×1.25=0.8a×3.5,
  (1.6a+c)×1.25=2.8a,
          2a+1.25c=2.8a,
           2.8a-2a=1.25c,
所以:a:c=25:16,
因为宽都相等,所以AB:CD=25:16;
因为AB:BC=5:3=25:15,所以AB:BC:CD=25:15:16;
答:AB、BC、CD这三段距离之比是25:15:16.
点评:此题较难,应认真分析,解答此题的关键是:设出AB、BC、CD部分的底面积,表示出各部分的体积,因为每小时的水流量一定,列出等量关系,分别求出AB和BC的比及AB和CD的比,进而求出这三条线段的连比.
练习册系列答案
相关题目
节省材料焊水箱

  小聪、小明、小慧、小灵、小虎5个小伙伴是同班同学,也是要好的邻居,他们组成了课外学习小组,经常在王大伯的指导下研究一些生活中的数学问题。

  一天,王大伯要用一块长240cm、宽120cm的长方形铁皮,焊接成一个高30cm的长方体无盖水箱,请他们设计一个最省材料的方案。

  大家都意识到,要做到最省材料就需要想办法增加容积,可不是一件容易的事,商量一下后,大家都认真地画起图来。

  性急的小虎马上就想出了办法,他先画出了一个图(如图),说:“从这个长方形的四个角处各切掉一个边长为30cm的正方形,然后折起四边,就可以得到一个高30cm的水箱啦!

  小虎刚说完,小慧就接过话来:“这个方案肯定不理想,浪费了4个角的材料多可惜!

  大家都想不出好的办法,于是个个紧锁眉头在底下胡乱画着,突然小聪大叫起来:“我想出办法了,可以在一边切出两个正方形,然后在对面焊上,这样做成的水箱宽60cm、高30cm,但长是210cm,而且没有浪费材料,我想容积也一定大了。”

  小明很快算出了刚才小虎设计的容积大约是324升,小聪的方案(如图)大约是378升,容积是大多了,而且充分地利用了材料,正当大家为小聪高兴的时候,小灵冷不丁的冒出一句:“这样的容积一定是最大的吗?不浪费不等于最节省啊,既然高已经确定了,我想只有底面积最大容积才最大,最充分的利用材料也就是最节省材料。”

  经小灵一提醒,小慧突然想到:“老师说过,周长相等时,正方形的面积最大,应该尽量让底面积做成正方形的。”最后还是小灵想出办法:我们先切下两块长120cm、宽30cm的长方形,然后在另两边焊上,作为水箱的两个侧面,这样做的水箱底恰好是一个正方形(如图)

  读完上述内容,你看懂了吗?如果看懂了,请你试着解决下面的问题,你是否还有其他的设计方案,请你动手画一画,算一算:

  用一张长30厘米、宽20厘米的长方形铁皮(如图)做一个长方体铁皮盒(焊接处与铁皮厚度不计),做成的铁盒容积是多少立方厘米?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网