题目内容
一个自然数在四进制表示当中的各位数字之和是5,在五进制表示当中的各位数字之和是4,那么这个自然数除以3的余数是
2
2
,满足要求的最小自然数是(十进制表示)56
56
.分析:我们先从小到大写出各位数字之和是4的五进制的数,将它们化成十进制的形式,再进一步转化为四进制的形式,找到最先出现的数字之和为5的数即可得到最小的自然数,再根据3的倍数的特征求余数即可解答.
解答:解:各位数字之和是4的五进制的数,与四进制、十进制的转化如下表
由表可知,满足要求的最小自然数是(十进制表示) 56.
56的各位数字相加为11,11÷3=3…2,即56除以3的余数是2.
故答案为:2,56.
五进制数 | 十进制数 | 四进制数 | 四进制数字和 |
4 | 4 | 10 | 1 |
13 | 8 | 20 | 2 |
22 | 12 | 30 | 3 |
31 | 16 | 100 | 1 |
40 | 20 | 110 | 2 |
103 | 28 | 130 | 4 |
112 | 32 | 200 | 2 |
121 | 36 | 210 | 3 |
130 | 40 | 220 | 4 |
202 | 52 | 310 | 4 |
211 | 56 | 320 | 5 |
… | … | … | … |
56的各位数字相加为11,11÷3=3…2,即56除以3的余数是2.
故答案为:2,56.
点评:本题主要考查了特殊进位制之间的相互转化,对小学生来讲比较困难,解题关键是找出符合条件的最小数值.
理论验证如下:
对任意某进制数,其各位数字和能被(N-1)整除,则该数能被N-1整除.亦即该数的十进制值能被N-1整除;
在10进制中,各位数字和能被9整除,则此数必能被9整除;
在5进制中,各位数字和能被4整除,则此数必能被4整除;
在4进制中,各位数字和能被3整除,则此数必能被3整除;
证法参考10进制中被9整除的情况;
对任意某N进制数,其各位数字和被(N-1)除余K,则该数被(N-1)除余K;
结合以上两点,则
由在5进制表示当中的各位数字之和是4=5-1,推得该数被4整除;
由在4进制表示当中的各位数字之和是5=(4-1)+2,推得该数被3除余2;
被4整除、被3除余2的最小正整数时8,则有此性质的自然数=12T+8【T属于自然数】;
因(12T+8 )÷4=3T+2,也就是说除去四进制数个位上的0(必然的),
只需求某 3T+2 在四进制中各数字之和=5;
显然有T=4时,3T+2=14=4进制[32]符合且最小;
此时12T+8=12×4+8=56.
理论验证如下:
对任意某进制数,其各位数字和能被(N-1)整除,则该数能被N-1整除.亦即该数的十进制值能被N-1整除;
在10进制中,各位数字和能被9整除,则此数必能被9整除;
在5进制中,各位数字和能被4整除,则此数必能被4整除;
在4进制中,各位数字和能被3整除,则此数必能被3整除;
证法参考10进制中被9整除的情况;
对任意某N进制数,其各位数字和被(N-1)除余K,则该数被(N-1)除余K;
结合以上两点,则
由在5进制表示当中的各位数字之和是4=5-1,推得该数被4整除;
由在4进制表示当中的各位数字之和是5=(4-1)+2,推得该数被3除余2;
被4整除、被3除余2的最小正整数时8,则有此性质的自然数=12T+8【T属于自然数】;
因(12T+8 )÷4=3T+2,也就是说除去四进制数个位上的0(必然的),
只需求某 3T+2 在四进制中各数字之和=5;
显然有T=4时,3T+2=14=4进制[32]符合且最小;
此时12T+8=12×4+8=56.
练习册系列答案
相关题目