题目内容
(2009?自贡)用同样大小的黑、白两种小方砖铺一张正方形桌面,桌面的两条对角线铺黑色的小方砖,其余的都铺白色小方砖,如图所示.铺满这张桌面恰好用了93块黑色小方砖,那么用白色小方砖的块数是2116块.
正确
正确
.分析:此题可以看做是方阵问题进行解决:那么根据实心方阵的特点可知每边点数为:(93+1)÷2=47,利用实心方阵总点数=每边点数×每边点数,先求得黑白方砖的总块数数为:47×47=2209块,由此计算得出白色小方砖即可进行判断.为:2009-93=2116(块)
解答:解:根每条边上的方砖块数为:(93+1)÷2=47(块)
黑白色点数之和为:47×47=2209(块),
所以白色方砖的块数为:2209-93=2116(块),
所以原题说法正确.
故答案为:正确.
黑白色点数之和为:47×47=2209(块),
所以白色方砖的块数为:2209-93=2116(块),
所以原题说法正确.
故答案为:正确.
点评:此题考查了利用实心方阵问题解决实际问题的灵活应用,这里抓住对角线上的块数之和得出每边点数是解决此类问题的关键.
练习册系列答案
相关题目