题目内容
一个三层书架上共放书450本,如果把第二层上的
搬到第一层,把第三层上的
搬到第二层,那么三层上的书本数正好相等.这个书架上每层原有书各多少本?
1 |
3 |
1 |
4 |
分析:倒过来推导,最后三层书数量相等,各450÷3=150本,把第三层书的四分之一搬到二层,即第三层书的1-
=
,就是150本,即,第三层起始有150÷
=200本,同时,在“把第三层书的四分之一搬到二层”,第二层有150本,则把第二层上的
搬到第一层后,第二层有150-200×
=100本,则第二层原有100÷(1-
)=150本,所以第一层原有450-20-150=100本.综合,原来一到三层依次有100,150,200本.
1 |
4 |
3 |
4 |
3 |
4 |
1 |
3 |
1 |
4 |
1 |
3 |
解答:解:450÷3÷(1-
)
=150÷
=200(本);
(450÷3-200×
)÷(1-
)
=(150-50)÷
=100÷
=150(本);
450-200-150=100(本);
答:原来一到三层依次有100,150,200本.
1 |
4 |
=150÷
3 |
4 |
=200(本);
(450÷3-200×
1 |
4 |
1 |
3 |
=(150-50)÷
2 |
3 |
=100÷
2 |
3 |
=150(本);
450-200-150=100(本);
答:原来一到三层依次有100,150,200本.
点评:通过倒推法,根据所给条件依次求出各层本数是完成本题的关键.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目