题目内容
【题目】将25块边长为1的正方体积木堆放成一个几何体,如图所示,看谁堆放的几何体的表面积最小?最小的表面积是多少?(说明:这是一道现场动手操作题,每队的4名选手,既要动手,又要动脑,而且要有很好的合作精神.参赛队如果都没得到“最小表面积是54”的堆放法,就以堆放表面积最小的队为胜者.因此,本题以“看谁堆放的几何体的表面积最小?最小的表面积是多少?”来设问)
【答案】
设 想27块边长为1的正方体积木,其表面积为54(图a).现在要去掉2块小积木成为25块,其总表面积不会减少.要使得总表面积最小,发现在一个角处去掉相邻的两块小积木时(图b),或在两个角上各去掉一块小积木时(图C),总表面积不变,与边长为3的立方体的表面积相等,为3×3×6=54.所以堆放 25块小积木的最小表面积是54.
【解析】
略
练习册系列答案
相关题目