题目内容

【题目】已知圆的半径为3,圆心在轴正半轴上,直线与圆相切.

(1)求圆的标准方程;

(2)过点的直线与圆交于不同的两点而且满足求直线的方程.

【答案】(1) x﹣22+y2=9 (2) x﹣y﹣3=017x﹣7y﹣21=0x=0

【解析】试题分析:

1可设圆心坐标为,由直线与圆相切,知圆心M到切线的距离等于半径,可求得,从而得圆的标准方程;

2)注意分类讨论,当直线斜率不存在时,代入求出AB两点坐标,检验是否符合题意;当直线斜率存在时,设斜率为,得直线方程为,代入圆的方程,由韦达定理得,代入已知等式可求得的值,从而得直线方程.

试题解析:

(I)设圆心为M(a,0)(a0),

∵直线3x﹣4y+9=0与圆M相切

=3.

解得a=2,或a=﹣8(舍去),

所以圆的方程为:(x﹣22+y2=9

(II)当直线L的斜率不存在时,直线L:x=0,与圆M交于A(0,),B(0,﹣),

此时+=x1x2=0,所以x=0符合题意

当直线L的斜率存在时,设直线L:y=kx﹣3,

消去y,得(x﹣2)2+(kx﹣3)2=9,

整理得:(1+k2)x2﹣(4+6k)x+4=0.........................................................(1)

所以

由已知得:

整理得:7k2﹣24k+17=0

k值代入到方程(1)中的判别式△=(4+6)2﹣16(1+k2)=48k+20k2

判别式的值都为正数,所以,所以直线L为:

x﹣y﹣3=0,17x﹣7y﹣21=0

综上:直线L为:x﹣y﹣3=017x﹣7y﹣21=0x=0

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网