题目内容
体积相等的圆柱体和圆锥体的底面积的比是4:3,它们高的比是________.
1:4
分析:根据题干,设圆柱与圆锥的体积是V,圆柱的底面积是4S,圆锥的底面积是3S,由此利用圆柱和圆锥的体积公式即可求出它们的高的比.
解答:设圆柱与圆锥的体积是V,圆柱的底面积是4S,圆锥的底面积是3S,
则圆柱高与圆锥的高的比是::=1:4,
答:它们的高的比是1:4.
故答案为:1:4.
点评:此题主要考查圆柱与圆锥的体积的计算方法,关键是设出它们的体积和底面积,从而表示出它们的高.
分析:根据题干,设圆柱与圆锥的体积是V,圆柱的底面积是4S,圆锥的底面积是3S,由此利用圆柱和圆锥的体积公式即可求出它们的高的比.
解答:设圆柱与圆锥的体积是V,圆柱的底面积是4S,圆锥的底面积是3S,
则圆柱高与圆锥的高的比是::=1:4,
答:它们的高的比是1:4.
故答案为:1:4.
点评:此题主要考查圆柱与圆锥的体积的计算方法,关键是设出它们的体积和底面积,从而表示出它们的高.
练习册系列答案
相关题目
下面说法正确的是( )
A、所有三角形至少有两个锐角 | B、所有的偶数都是合数 | C、长方形、正方形和圆的周长相等,长方形的面积最大 | D、一个圆柱体,如果它的底面半径扩大到原来的2倍,高不变,那么它的体积也扩大到原来的2倍 |