题目内容
一块长方形铁皮,长48厘米,宽36厘米,要把它剪成同样大小的正方形且没有剩余,这种正方形的边长最大是多少?被剪成几块?
考点:公因数和公倍数应用题
专题:约数倍数应用题
分析:求出48和36的最大公因数,就是每个正方形的边长;用48和36分别除以正方形边长,得到的数相乘就是最少可以剪出的正方形个数,因此得解.
解答:
解:48=2×2×2×2×3,
36=2×2×3×3,
所以48和36的最大公因数是:2×2×3=12,即剪出的正方形的边长是12厘米;
(48÷12)×(36÷12)
=4×3
=12(个);
答:正方形的边长最大是12厘米,至少可以剪成12块.
36=2×2×3×3,
所以48和36的最大公因数是:2×2×3=12,即剪出的正方形的边长是12厘米;
(48÷12)×(36÷12)
=4×3
=12(个);
答:正方形的边长最大是12厘米,至少可以剪成12块.
点评:此题主要考查求两个数的最大公因数,能够根据求最大公因数的方法解决有关的实际问题.
练习册系列答案
相关题目
两个因数的积是200,如果一个因数不变,另一个因数除以5,积是( )
A、200 | B、1000 | C、40 |