题目内容
解方程:
X+
|
|
|
4.1÷(
|
分析:(1)把含有X的式子合并,然后方程的两边同时除以X前面的系数,求解即可,
(2)先求出方程左边式子
×5的值,然后在方程的两边同时减去这个值,最后在方程的两边同时除以
,求解即可,
(3)先在方程的两边同时加上2X,然后在方程的两边同时减去
,最后在方程的两边同时除以2,求解即可,
(4)把括号里的面式子看成一个整体,在方程的两边同时乘上这个整体,然后求解即可.
(2)先求出方程左边式子
4 |
3 |
4 |
3 |
(3)先在方程的两边同时加上2X,然后在方程的两边同时减去
5 |
8 |
(4)把括号里的面式子看成一个整体,在方程的两边同时乘上这个整体,然后求解即可.
解答:
+2X=
,
+2X-
=
-
,
2X=
,
2X÷2=
÷2,
X=
;
(4)4.1÷(
×X-
)=3,
4.1÷(
×X-
)×(
×X-
)=3×(
×X-
),
3×(
×X-
)=4.1,
X-
=4.1,
X-
+
=4.1+
,
X=4.7,
X÷
=4.7÷
,
X=
.
解:(1)X+
X=3; (2)
X=
(3)
|
5 |
8 |
3 |
4 |
5 |
8 |
5 |
8 |
3 |
4 |
5 |
8 |
2X=
1 |
8 |
2X÷2=
1 |
8 |
X=
1 |
16 |
(4)4.1÷(
4 |
5 |
1 |
5 |
4.1÷(
4 |
5 |
1 |
5 |
4 |
5 |
1 |
5 |
4 |
5 |
1 |
5 |
3×(
4 |
5 |
1 |
5 |
12 |
5 |
3 |
5 |
12 |
5 |
3 |
5 |
3 |
5 |
3 |
5 |
12 |
5 |
12 |
5 |
12 |
5 |
12 |
5 |
X=
47 |
24 |
点评:此题考查了解方程的方法,关键是要注意把括号内的看作一个整体或者把能计算出结果的式子要先计算出结果,然后再求解.
练习册系列答案
相关题目