题目内容
【题目】我们知道,每个自然数都有因数,对于一个自然数a,我们把小于a的正的因数叫做a的真因数.如10的正因数有1、2、5、10,其中1、2、5是10的真因数.把一个自然数a的所有真因数的和除以a,所得的商叫做a的“完美指标”.如10的“完美指标”是(1+2+5)÷10=.一个自然数的“完美指标”越接近1,我们就说这个数越“完美”.如8的“完美指标”是(1+2+4)÷8=,10的“完美指标”是,因为比更接近1,所以我们说8比10更完美.那么比10大,比20小的自然数中,最“完美”的数是 .
【答案】16
【解析】
试题分析:根据“完美指标”的意义知道,自然数的真因数越多,此数越完美;因为在11﹣19的数中,11、13、17、19是质数,真因数只有1,所以先排除这4个数,再分别找出12、14、15、16、18的正因数,再分别找出它们的真因数,最后再由“完美指标”的意义,分别求出“完美指标”.
解答:解:12的正因数有:1、2、3、4、6、12,其中1、2、3、4、6是真因数,
完美指标:(1+2+3+4+6)÷12=≈1.33,
14的正因数有:1、2、7、14,其中1、2、7是真因数,
完美指标:(1+2+7)÷14=≈0.71,
15的正因数有:1、3、5、15,其中1、3、5是真因数,
完美指标:(1+3+5)÷15==0.6,
16的正因数有:1、2、4、8、16,其中1、2、4、8是真因数,
完美指标:(1+2+4+8)÷16=≈0.94,
18的正因数有:1、2、3、6、9、18,其中1、2、3、6、9是真因数,
完美指标:(1+2+3+6+9)÷18=≈1.17,
由以上所求的完美指标知道,16的完美指标最接近1,
所以,比10大,比20小的自然数中,最“完美”的数是16.
答:比10大,比20小的自然数中,最“完美”的数是16.
故答案为:16.