题目内容

公园水池每周需换一次水.水池有甲、乙、丙三根进水管.第一周小李按甲、乙、丙、甲、乙、丙…的顺序轮流打开小1时,恰好在打开某根进水管1小时后灌满空水池.第二周他按乙、丙、甲、乙、丙、甲…的顺序轮流打开1小时,灌满一池水比第一周少用了15分钟;第三周他按丙、乙、甲、丙、乙、甲…的顺序轮流打开1小时,比第一周多用了15分钟.第四周他三个管同时打开,灌满一池水用了2小时20分,第五周他只打开甲管,那么灌满一池水需用
7
7
小时.
分析:如第一周小李按甲、乙、丙、甲、乙、丙…的顺序轮流打开1小时,恰好在打开丙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲…的顺序轮流打开1小时,应在打开甲管1小时后灌满一池水,不合题意;
如第一周小李按甲、乙、丙、甲、乙、丙…的顺序轮流打开1小时,恰好在打开乙管1小时后灌满空水池,则第二周他按乙、丙、甲、乙、丙、甲…的顺序轮流打开1小时,应在打开丙管45分钟后灌满一池水;第三周他按丙、乙、甲、丙、乙、甲…的顺序轮流打开1小时,应在打开甲管后15分钟灌满一池水;比较第二周和第三周,发现开乙管1小时和丙管45分钟的进水量与开丙管、乙管各1小时加开甲管15分钟的进水量相同,矛盾;
所以第一周是在开甲管1小时后灌满水池的;比较三周发现,甲管1小时的进水量与乙管45分钟的进水量相同,乙管30分钟的进水量与丙管1小时的进水量相同.三管单位时间内的进水量之比为3:4:2;据此解答即可.
解答:解:由分析可知:甲管1小时的进水量与乙管45分钟的进水量相同,乙管30分钟的进水量与丙管1小时的进水量相同.三管单位时间内的进水量之比为3:4:2;
2小时20分=2
1
3
时,
2
1
3
×(3+4+2)÷3
=
7
3
×
1
3

=7(小时).
答:第五周他只打开甲管,那么灌满一池水需用7小时;
故答案为:7.
点评:此题属于复杂的工程问题应用题,根据题意推出:三管单位时间内的进水量之比为3:4:2,是解答此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网