题目内容

【题目】将指定的数填入下表中,要求每个格子里一个数字,表中的每横行从左到右数字由小到大,每竖列从上到下数字也由小到大.

(1)将1﹣4的自然数填入表①中,共有多少种方法?

(2)将1﹣6的自然数填入表②中,共有多少种方法?

(3)将1﹣9的自然数填入表③中,共有多少种方法.

【答案】(1)2种;(2)5种;(3)21种

【解析】

试题分析:(1)要符合每横行从左到右数字由小到大,每竖列从上到下数字也由小到大排列.图一中,1只能在A的位置,4只能在D的位置,2和3可在B、C这两个格子中排列,所以共有2种方法;

(2)图二中,1只能在A的位置,6只能在F的位置,2只能在B和D,5只能在C、E的位置,数字5在C,有2种排列,数字5在E,又有3种排列方法;所以一共有2+3=5(种).

(3)由(2)的规律已经知道,6格是5种,1、2、3确定后,剩下的6个一定是5种;由此进行求解.

解答:解:(1)如图,1和4是固定的,另外两格随便选,2种.

如下:

(2)1和6是固定的,其余的不确定:

(3)由(2)的规律已经知道,6格是5种;

1、2、3确定后,剩下的6个一定是5种,比如:

同理:

也对各对应5个;

但是例外,对应的不是5个.因为第一排右边的数限制了下面的数.

如下:

所以:共计5+5+5+4+2=21(种)

同理,以上所有情况倒过来后都有一一对应的种类

翻了一番,共21×2=42(种).

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网