题目内容

探究并计算(大胆实践,你一定能探索成功!)
观察后面等式:
1
1×2
=1-
1
2
1
2×3
=
1
2
-
1
3
1
3×4
=
1
3
-
1
4
,将前面三个等式两边分别相加得:
1
1×2
+
1
2×3
+
1
4=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4

(1)猜想并写出:
1
n(n+1)
=______.
(2)直接写出下面式子的计算结果:
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2006×2007
=______.
(3)探究并计算:
1
2×4
+
1
4×6
+
1
6×8
+…
1
2006×2008
(1)
1
n(n+1)
=
1
n
-
1
n+1


(2)
1
1×2
+
1
2×3
+
1
3×4
+…+
1
2006×2007

=1-
1
2
+
1
2
-
1
3
+…+
1
2006
-
1
2007

=1-
1
2007

=
2006
2007


(3)
1
2×4
+
1
4×6
+
1
6×8
+…
1
2006×2008

=(
1
2
-
1
4
1
2
+(
1
4
-
1
6
1
2
+(
1
6
-
1
8
1
2
+…+(
1
2006
-
1
2008
1
2

=(
1
2
-
1
4
+
1
4
-
1
6
+
1
6
-
1
8
+…+
1
2006
-
1
2008
1
2

=(
1
2
-
1
2008
1
2

=
1003
2008
×
1
2

=
1003
4016


故答案为:
1
n
-
1
n+1
2006
2007
1003
4016
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网