题目内容
【题目】在一根长100厘米的木棍上,从左至右每隔6厘米染上一个红点,同时从右至左,每隔5厘米也染一个红点,然后沿红点处将木棍逐段锯开,问长度是1厘米的木棍有几根?共有几根?
【答案】7根 33根
【解析】
因为100能被5整除,所以自右至左染色也就是自左至右染色.于是我们可以看作是从同一端点染色.
6与5的最小公倍数是30,即在30厘米的地方,同时染上红色,这样染色就会出现循环,每一周的长度是30厘米,如图所示.
由图示可知长1厘米的短木棍,每一周期中有两段,如第1周期中,6﹣5=1,5×5﹣6×4=1.剩余10厘米中有一段.所以锯开后长1厘米的短木棍共有7段.第一个周期需要10锯,能锯下10段,同理第二个周期是10段,第三个周期是10段,剩下的10厘米可以锯出3段,由此列式解答即可.
解决这一问题的关键是根据整除性把自右向左每隔5厘米的染色,转化为自左向右的染色,便于利用最小公倍数发现周期现象,化难为易.
2×[(100﹣10)÷30]+1
=2×3+1
=7(段)
答:那么长度是1厘米的短木棍有7根.
10×[(100﹣10)÷30]+3
=10×3+3
=33(段)
答:共有33根.
练习册系列答案
相关题目