题目内容
解方程,
{
[
(
x-1)-6]+4}=1,得x=
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
5
5
.分析:此方程应采用逐步去括号的办法,根据等式的性质,两边同乘2,再同减去4,然后两边同乘3,再同加上6,然后同乘4,再同加上1,最后同城5即可.
解答:解:
{
[
(
x-1)-6]+4}=1,
{
[
(
x-1)-6]+4}×2=1×2,
[
(
x-1)-6]+4=2,
[
(
x-1)-6]+4-4=2-4,
[
(
x-1)-6]=-2,
[
(
x-1)-6]×3=-2×3,
(
x-1)-6=-6,
(
x-1)-6+6=-6+6,
(
x-1)=0,
(
x-1)×4=0×4,
x-1=0,
x-1+1=0+1,
x=1,
x×5=1×5,
x=5.
故答案为:5.
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
2 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
3 |
1 |
4 |
1 |
5 |
1 |
4 |
1 |
5 |
1 |
4 |
1 |
5 |
1 |
4 |
1 |
5 |
1 |
4 |
1 |
5 |
1 |
5 |
1 |
5 |
1 |
5 |
1 |
5 |
x=5.
故答案为:5.
点评:此题考查了根据等式的性质解方程,即等式两边同加、同减、同乘或同除以一个数(0除外),等式的左右两边仍相等;注意等号上下要对齐.
练习册系列答案
相关题目