题目内容

有三堆石子,每次允许由每堆中拿掉一个或相同数目的石子(每次这个数目不一定相同),或由任一堆中取一半石子(如果这堆石子是偶数个)放入另外任一堆中,开始时三堆石子数分别为1989,989,89.如按上述方式进行操作,能否把这三堆石子都取光?如行,请设计一种取石子的方案,如不行,说明理由.
分析:(1)利用每次从这三堆石子中的任意两堆中各取出1个石子,然后把这2个石子都加到另一堆中去,分别进行实验即可得出答案;
(2)根据操作方法得出每堆石子数要么加2,要么少1,得出三堆石子不可能同时被3整除.
解答:解:要把三堆石子都取光是不可能的;按操作规则,每次拿出去的石子总和是3的倍数,即不改变石子总数被3除的余数;而1989+989+89=3067被3除余1,三堆石子取光时总和被3除余0.
答:三堆石子都取光是办不到的.
点评:此题主要考查了整数倍数的综合应用,利用数的整除性规律得出三堆石子不可能同时被3整除是解决问题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网