题目内容

6.把一个棱长是4厘米的正方体,削成一个最大的圆柱体,削去的体积是(  )立方厘米.
A.50.24B.13.76C.12.56

分析 正方体内最大的圆柱的底面直径和高都等于这个正方体的棱长,由此利用圆柱的体积公式即可求出这个圆柱的体积;再利用正方体的体积减去圆柱的体积就是要削去的体积,即a×a×a-πγ2h=削去的体积.

解答 解:4×4×4-3.14×(4÷2)2×4
=64-3.14×4×4
=64-50.24
=13.76(立方厘米)
答:削去部分的体积是13.76立方厘米.
故选:B.

点评 此题考查了正方体内最大的圆柱的特点,以及正方体和圆柱的体积公式的计算应用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网