题目内容

16.加工一批零件,甲单独做需要8小时,乙单独做需要10小时,甲、乙的工作效率之比是5:4.若两人同时加工,完成时,甲做了这批零件的$\frac{5}{9}$.

分析 甲单独做需要8小时,甲的工作效率为$\frac{1}{8}$;乙单独做需要10小时,乙的工作效率为$\frac{1}{10}$,再求甲、乙的工作效率之比即可;
把总的零件看作单位“1”,根据工作时间=工作总量÷工作效率,得出两人同时加工所用的时间,再用时间乘以甲的工作效率即可.

解答 解:$\frac{1}{8}$:$\frac{1}{10}$
=($\frac{1}{8}$×40):($\frac{1}{10}$×40)
=5:4,
答:甲、乙的工作效率之比是5:4;
1÷($\frac{1}{8}$+$\frac{1}{10}$)×$\frac{1}{8}$
=$\frac{40}{9}$×$\frac{1}{8}$
=$\frac{5}{9}$
答:甲做了这批零件的$\frac{5}{9}$.
故答案为:5:4,$\frac{5}{9}$.

点评 本题考查了简单的工程问题,用到工作时间=工作总量÷工作效率.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网