题目内容

9.甲乙两车在一条长10千米的环形公路上从同一地点沿相反方向同时开出,甲车行4千米与乙车相遇,相遇后两车速度各加10%继续前进,按此规律每次相遇后速度都增加10%,第三次相遇时甲车离出发点多少千米?

分析 首先根据速度×时间=路程,可得时间一定时,路程和速度成正比,据此求出开始时甲乙两车的速度之比是多少;然后根据每次相遇后两车速度各加10%,可得甲乙两车的速度之比不变,所以每次相遇时,甲乙行的路程之比不变,因此每次相遇时甲车行的路程都是4千米,求出第三次相遇时甲车行驶的路程是4×3=12(千米),再用它减去环形公路的长度,求出第三次相遇时甲车离出发点多少千米即可.

解答 解:甲乙两车的速度之比是:
4:(10-4)=4:6=2:3;
因为每次相遇后速度都增加10%,
所以每次相遇时,甲乙行的路程之比不变,
因此每次相遇时甲车行的路程都是4千米,
所以第三次相遇时甲车离出发点:
4×3-10=2(千米)
答:第三次相遇时甲车离出发点2千米.

点评 此题主要考查了行程问题中速度、时间和路程的关系:速度×时间=路程,路程÷时间=速度,路程÷速度=时间,要熟练掌握;解答此题的关键是要明确:时间一定时,路程和速度成正比,并能判断出每次相遇时甲车行的路程都是4千米.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网