题目内容
统一法:计算:
+
+
+…+
.
12 |
1 |
12+22 |
1+2 |
12+22+32 |
1+2+3 |
12+22+…+272 |
1+2+…+27 |
分析:解决此题,运用关系式:(12+22+…+n2)=n(n+1)(2n+1)÷6.例如:当n=27时(12+22+…+272)=27×(27+1)(2×27+1)÷6,据此,先计算每个分数的分子,原式变为1+
+
+
+
…+
,通过进一步计算即可.
5 |
3 |
7 |
3 |
9 |
3 |
11 |
3 |
201 |
3 |
解答:解:
+
+
+…+
,
=1+
×
+
×
+…+
×
,
=1+
+
+
+
…+
,
=1+
,
=1+3399,
=3400.
12 |
1 |
12+22 |
1+2 |
12+22+32 |
1+2+3 |
12+22+…+272 |
1+2+…+27 |
=1+
2×(2+1)×(2×2+1) |
6 |
1 |
3 |
3×(3+1)×(2×3+1) |
6 |
1 |
6 |
27×(27+1)×(2×100+1) |
6 |
1 |
378 |
=1+
5 |
3 |
7 |
3 |
9 |
3 |
11 |
3 |
201 |
3 |
=1+
(5+201)×[(201-5)÷2+1]÷2 |
3 |
=1+3399,
=3400.
点评:认真审题,仔细观察,根据数字特点,运用关系式:(12+22+…+n2)=n(n+1)(2n+1)÷6,计算分子,进一步解决问题.
练习册系列答案
相关题目