题目内容
【题目】x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中 m、n、k均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.
【答案】10
【解析】x、y表示两个数,规定新运算“*”及“△”如下:x*y=mx+ny,x△y=kxy,其中 m、n、k均为自然数,已知 1*2=5,(2*3)△4=64,求(1△2)*3的值.
分析 我们采用分析法,从要求的问题入手,题目要求(1△2)*3的值,首先我们要计算1△2,根据“△”的定义:1△2=k×1×2=2k,由于k的值不知道,所以首先要计算出k的值.k值求出后,l△2的值也就计算出来了,我们设1△2=a.
(1△2)*3=a*3,按“*”的定义: a*3=ma+3n,在只有求出m、n时,我们才能计算a*3的值.因此要计算(1△2)* 3的值,我们就要先求出 k、m、n的值.通过1*2 =5可以求出m、n的值,通过(2*3)△4=64求出 k的值.
因为1**2=m×1+n×2=m+2n,所以有m+2n=5.又因为m、n均为自然数,所以解出:
,(舍去)
①当m=1,n=2时:
(2*3)△4=(1×2+2×3)△4=8△4=k×8×4=32k
有32k=64,解出k=2.
②当m=3,n=1时:
(2*3)△4=(3×2+1×3)△4=9△4=k×9×4=36k
有36k=64,解出,这与k 是自然数矛盾,因此m=3,n=1,这组值应舍去。
所以m=l,n=2,k=2.
(1△2)*3=(2×1×2)*3=4*3 =1×4+2×3=10.
练习册系列答案
相关题目