题目内容
【题目】如图是边长100厘米的正方形,它的内侧有一个直径20厘米的圆沿边长滚动一周,①这个圆心经过的总路程是多少厘米?②圆形滚动不到的地方面积有多大.
【答案】320厘米,3686平方厘米
【解析】
试题分析:(1)圆心经过的路程,就是边长为100﹣20=80厘米的正方形的周长;
(2)圆滚不到的面积等于里面的边长为100﹣20×2=60厘米的正方形的面积加上大正方形四个角上的滚不到部分的面积.
解:(1)100﹣20=80(厘米),
80×4=320(厘米);
(2)半径:20÷2=10(厘米);
圆滚不到的里面正方形的边长为:100﹣20×2=60(厘米),
所以滚不到的面积为:60×60+(10×10﹣×3.14×102)×4,
=3600+(100﹣78.5)×4,
=3600+21.5×4,
=3600+86,
=3686(平方厘米);
答:圆心经过的总路程是320厘米,圆滚不到的面积是3686平方厘米.
练习册系列答案
相关题目