题目内容
【题目】少年歌手大奖赛的裁判小组由若干人组成,每名裁判员给歌手的最高分不超过10分。第一名歌手演唱后的得分情况是:全体裁判员所给分数的平均分是9.64分;如果只去掉一个最高分,则其余裁判员所给分数的平均分是9.60分;如果只去掉一个最低分,则其余裁判员所给分数的平均分是9.68分。求所有裁判员所给分数中的最低分最少可以是多少分?这时大奖赛的裁判员共有多少名?
【答案】9.28分,10名
【解析】设裁判员有x名,根据题意,可求出去掉最高分后的总分为9.60(x-1),由此可知最高分为:9.64x-9.60(x-1);再求出去掉最低分后的总分为9.68(x-1),由此可知最低分为:9.64x-9.68(x-1);最后再根据每名裁判员给歌手的最高分不超过10分,即可求出最低分。
解:设大奖赛的裁判员有x名,那么总分为9.64x。
(1)去掉最高分的总分为9.60(x-1),
最高分为:9.64x-9.60(x-1)=0.04x+9.6
(2)去掉最低分后的总分为9.68(x-1),
最低分为:9.64x-9.68(x-1)=9.68-0.04x
因为最高分不超过10,所以0.04x+9.6不超过10,也就是0.04x不超过0.4,由此可知x不超过10.
当x取10时,最低分有最小值,最低分最少可以是9.68-0.04×10=9.28(分)
所以最低分是9.28,裁判员有10名。
答:所有裁判员所给分数中的最低分最少可以是9.28分,这时大奖赛的裁判员共有10名。
练习册系列答案
相关题目
【题目】类型一:(注意:一定要括号外的数分别乘括号里的两个数,再把积相加)
⑴(40+8)×25 | ⑵125×(8+80) | ⑶36×(100+50) |
⑷24×(2+10) | ⑸86×(1000﹣2) | ⑹15×(40﹣8) |