题目内容
【题目】如图,在四棱锥P-ABCD中,AD⊥平面PCD,PD⊥CD,底面ABCD是梯形,AB∥DC,AB=AD=PD=1,CD=2AB, 为棱PC上一点.
(Ⅰ)若点是PC的中点,证明:B∥平面PAD;
(Ⅱ) 试确定的值使得二面角-BD-P为60°.
【答案】(Ⅰ)见解析;(Ⅱ)
【解析】试题分析:(Ⅰ)取的中点,连接,由三角形中位线定理结合可得题设条件可得四边形是平行四边形, ,由线面平行的判定定理可得结论;(Ⅱ) 两两垂直,以 为原点所在直线为轴建立空间直角坐标系,可证明平面, 是平面 的法向量,利用向量垂直数量积为零,用表示出平面的法向量,利用空间向量夹角余弦公式列方程求解即可.
试题解析:(Ⅰ)取PD的中点M,连接AM,M,
,
M∥CD,
又AB∥CD, ∥AB,QM=AB,
则四边形ABQM是平行四边形. ∥AM.
又平面PAD,BQ平面PAD, ∥平面PAD.
(Ⅱ)解:由题意可得DA,DC,DP两两垂直,以D为原点,DA,DC,DP所在直线为轴建立如图所示的空间直角坐标系,
则P(0,1,1),C(0,2,0),A(1,0,0),B(1,1,0).
令
又易证BC⊥平面PBD,
设平面QBD的法向量为
令
,
解得
Q在棱PC上,
练习册系列答案
相关题目