题目内容

【题目】在一个长方形人工湖的中间修了两条分别为40米、60米的坝,(如图)如果再在湖的四周和堤坝上隔2米种一棵树,最多可以种树多少棵?

【答案】147棵

【解析】

试题分析:先求出四周要植树多少棵,考虑最多情况:四个角都植树,那么植树的棵树=间隔数,使四周植树棵树最多为:(40+60)×2÷2=100(棵)。

再求出中间两条坝上植树的棵数:因为坝的两端处在四周的中点上,所以不再植树,那么植树的棵数=间隔数-1,由此可以求得植树:60÷2-1+40÷2-1=48(棵),中间1棵重复加了,所以两条坝上的植树棵数为:48-1=47(棵)。

解:四周植树棵树为:

(40+60)×2÷2

=100×2÷2

=100(棵)

两条坝上的植树棵树为:

60÷2-1+40÷2-1-1

=30-1+20-1-1

=47(棵)

100+47=147(棵)

最多可以种147棵树。

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网