题目内容
如果a<b<0,那么
ab 0,a-b 0,a+b 2b.
5 | 6 |
分析:因为a<b<0,根据负负得正,可得ab>0,则
ab>0;
又因为a的绝对值等于b的绝对值,所以a-b的符号取负号,所以a-b<0;
a与b都是负数,两个数相加取与加数相同的符号,所以a+b<0,据此即可填空.
5 |
6 |
又因为a的绝对值等于b的绝对值,所以a-b的符号取负号,所以a-b<0;
a与b都是负数,两个数相加取与加数相同的符号,所以a+b<0,据此即可填空.
解答:解:因为a<b<0,根据负负得正,可得ab>0,
则
ab>0;
又因为a的绝对值等于b的绝对值,所以a-b的符号取负号,
所以a-b<0;
a与b都是负数,两个数相加取与加数相同的符号,
所以a+b<0,
故答案为:>;<;<.
则
5 |
6 |
又因为a的绝对值等于b的绝对值,所以a-b的符号取负号,
所以a-b<0;
a与b都是负数,两个数相加取与加数相同的符号,
所以a+b<0,
故答案为:>;<;<.
点评:此题主要考查有理数的运算中,运算符号的判断方法.
练习册系列答案
相关题目