题目内容

平面上有5个点,无三点共线,以任意三点组成一个三角形,则三角形的个数应为
10
10
分析:因为平面上有5个点,其中任意三点都不在同一条直线上,所以这些点共可组成5×(5-1)÷2=10个不同的三角形.
解答:解:从五个点中选3点,可考虑成从五个点中选两点不用,共有
5×4
2
=10
(种)方法,也就是有10个三角形.
故答案为:10.
点评:考查了数三角形的个数,可以按照数线段条数的方法,如果平面上有5个点,其中任意三点都不在同一条直线上,那么就有
n(n-1)
2
条线段,得到
n(n-1)
2
个三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网