题目内容

在学习了长方形的周长和面积后,小明兴奋地告诉老师和同学们:“我发现了一个规律,‘长方形的面积随着周长的增加而增加’.”你认为他说得对吗?为什么?

解:假设甲长方形的长为3厘米、宽为2厘米,
乙长方形的长为5厘米,宽为1厘米,
则甲长方形的周长:(3+2)×2=10(厘米),
面积:3×2=6(平方厘米),

乙长方形的周长:(5+1)×2=12(厘米),
面积:5×1=5(平方厘米),

由此看来,长方形的周长增加了,面积却减少了,
所以小明的说法是错误的.
分析:可以利用长方形的周长、面积公式,举具体的例子,进行计算,即可判断出小明的说法是否正确.
点评:解答此题的关键是:举实例,通过计算,即可推翻题干的结论.
练习册系列答案
相关题目
节省材料焊水箱

  小聪、小明、小慧、小灵、小虎5个小伙伴是同班同学,也是要好的邻居,他们组成了课外学习小组,经常在王大伯的指导下研究一些生活中的数学问题。

  一天,王大伯要用一块长240cm、宽120cm的长方形铁皮,焊接成一个高30cm的长方体无盖水箱,请他们设计一个最省材料的方案。

  大家都意识到,要做到最省材料就需要想办法增加容积,可不是一件容易的事,商量一下后,大家都认真地画起图来。

  性急的小虎马上就想出了办法,他先画出了一个图(如图),说:“从这个长方形的四个角处各切掉一个边长为30cm的正方形,然后折起四边,就可以得到一个高30cm的水箱啦!

  小虎刚说完,小慧就接过话来:“这个方案肯定不理想,浪费了4个角的材料多可惜!

  大家都想不出好的办法,于是个个紧锁眉头在底下胡乱画着,突然小聪大叫起来:“我想出办法了,可以在一边切出两个正方形,然后在对面焊上,这样做成的水箱宽60cm、高30cm,但长是210cm,而且没有浪费材料,我想容积也一定大了。”

  小明很快算出了刚才小虎设计的容积大约是324升,小聪的方案(如图)大约是378升,容积是大多了,而且充分地利用了材料,正当大家为小聪高兴的时候,小灵冷不丁的冒出一句:“这样的容积一定是最大的吗?不浪费不等于最节省啊,既然高已经确定了,我想只有底面积最大容积才最大,最充分的利用材料也就是最节省材料。”

  经小灵一提醒,小慧突然想到:“老师说过,周长相等时,正方形的面积最大,应该尽量让底面积做成正方形的。”最后还是小灵想出办法:我们先切下两块长120cm、宽30cm的长方形,然后在另两边焊上,作为水箱的两个侧面,这样做的水箱底恰好是一个正方形(如图)

  读完上述内容,你看懂了吗?如果看懂了,请你试着解决下面的问题,你是否还有其他的设计方案,请你动手画一画,算一算:

  用一张长30厘米、宽20厘米的长方形铁皮(如图)做一个长方体铁皮盒(焊接处与铁皮厚度不计),做成的铁盒容积是多少立方厘米?

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网