题目内容
【题目】某个家庭有4个成员,他们的年龄各不相同,4人年龄的和是129岁,其中有3人的年龄是平方数.如果倒退15年,这4人中仍有3人的年龄是平方数.请问,他们4人现在的年龄分别是______.
【答案】16,24,25,64
【解析】
因为现在的年龄能倒退15年,故每人年龄必都大于15岁.据此,不可能有92和102年龄的人,于是所考虑的平方数是16,25,36,49,64,倒退15年依次是1,10,21,34,49岁.我们可以确定16和64二数,由129-(16+64)=49,还有一个只能是49-25=24,而24-15=9=32正好符合要求.因此本题答案是:四人年龄分别为16,24,25,64岁.
练习册系列答案
相关题目