题目内容
【题目】如图,在三角形ABC中,点D、E、F分别为AB、BC、CA延长线的点,且=2;=3;=4,三角形ABC的面积为1,则三角形DEF的面积为 .
【答案】20.5.
【解析】
试题分析:
过点B作线段DE的平行线交线段AF与点M,过点A作线段EF的平行线交线段CE与点N,过点C作线段DE的平行线交线段DB与点P,因为=2;=3;=4,所以MA:AC=1.5:1,CN:BC=1:2,PB:AB=1:2,根据等高的三角形的面积之比等于底的比,即可求得三角形AMB的面积=2三角形ABC的面积=2×1=2,三角形ANC的面积=三角形ABC面积的一半=1÷2=0.5,三角形CBP的面积=三角形ABC面积的一半=1÷2=0.5,再根据相似三角形面积的比等于相似比的平方求得:三角形AMB的面积:三角形ADF的面积=(1:2)2,得出三角形ADF的面积=8,同理可得:三角形CEF的面积=16×0.5=8,三角形DBE的面积=9×0.5=4.5,故此三角形AEF的面积=8+8+4.5=20.5,据此解答即可.
解:如图:
过点B作线段DE的平行线交线段AF与点M
过点A作线段EF的平行线交线段CE与点N
过点C作线段DE的平行线交线段DB与点P
因为:
且=2;=3;=4
所以:
M:DF=AB:AD=1:2
AN:EF=CA:CF=1:4
PC:DB=BC:BE=1:3
MA:AC=1.5:1,CN:BC=1:2,PB:AB=1:2
根据等高的三角形面积之比等于它们底的比,所以:
三角形AMB的面积=2三角形ABC的面积=2×1=2
三角形ANC的面积=三角形ABC面积的一半=1÷2=0.5
三角形CBP的面积=三角形ABC面积的一半=1÷2=0.5
所以:
三角形AMB的面积:三角形ADF的面积=(1:2)2
三角形ADF的面积=8
同理可得:
三角形CEF的面积=16×0.5=8
三角形DBE的面积=9×0.5=4.5
而:
三角形AEF的面积
=三角形ADF的面积+三角形CEF的面积+三角形DBE的面积
=8+8+4.5
=20.5
答:三角形DEF的面积为20.5