题目内容

【题目】如图,在三角形ABC中,点D、E、F分别为AB、BC、CA延长线的点,且=2;=3;=4,三角形ABC的面积为1,则三角形DEF的面积为      

【答案】20.5.

【解析】

试题分析:

过点B作线段DE的平行线交线段AF与点M,过点A作线段EF的平行线交线段CE与点N,过点C作线段DE的平行线交线段DB与点P,因为=2;=3;=4,所以MA:AC=1.5:1,CN:BC=1:2,PB:AB=1:2,根据等高的三角形的面积之比等于底的比,即可求得三角形AMB的面积=2三角形ABC的面积=2×1=2,三角形ANC的面积=三角形ABC面积的一半=1÷2=0.5,三角形CBP的面积=三角形ABC面积的一半=1÷2=0.5,再根据相似三角形面积的比等于相似比的平方求得:三角形AMB的面积:三角形ADF的面积=(1:2)2,得出三角形ADF的面积=8,同理可得:三角形CEF的面积=16×0.5=8,三角形DBE的面积=9×0.5=4.5,故此三角形AEF的面积=8+8+4.5=20.5,据此解答即可.

解:如图:

过点B作线段DE的平行线交线段AF与点M

过点A作线段EF的平行线交线段CE与点N

过点C作线段DE的平行线交线段DB与点P

因为:

=2;=3;=4

所以:

M:DF=AB:AD=1:2

AN:EF=CA:CF=1:4

PC:DB=BC:BE=1:3

MA:AC=1.5:1,CN:BC=1:2,PB:AB=1:2

根据等高的三角形面积之比等于它们底的比,所以:

三角形AMB的面积=2三角形ABC的面积=2×1=2

三角形ANC的面积=三角形ABC面积的一半=1÷2=0.5

三角形CBP的面积=三角形ABC面积的一半=1÷2=0.5

所以:

三角形AMB的面积:三角形ADF的面积=(1:2)2

三角形ADF的面积=8

同理可得:

三角形CEF的面积=16×0.5=8

三角形DBE的面积=9×0.5=4.5

而:

三角形AEF的面积

=三角形ADF的面积+三角形CEF的面积+三角形DBE的面积

=8+8+4.5

=20.5

答:三角形DEF的面积为20.5

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网