题目内容
【题目】小明在7点与8点之间解了一道题.开始时分针与时针成一条直线,解完题时两针正好重合。小明解题用了多少时间?
【答案】
【解析】本题可分两步去分析,(1)先求出小明解题开始的时间:开始时分针与时针成一条直线,此时分针与时针夹角为180°,一小时为60格,则分针落后时针60×(180÷360)=30(格)。而7点整时分针落后时针5×7=35(格)。因此,从7点整到此时成一直线,分针要比时针多走35-30=5(格)。5÷(1-)=(分钟)。即小明开始解题的时间是7点分。
(2)小明解题结束的时刻:从7点整到这一时刻分针要比时针多走5×7=35(格)。35÷(1-)=(分钟)。即小明解题结束时是7点分钟。7点分钟-7点分=(分钟)
答:小明解题用了分钟。
解:(1)小明开始解题的时刻:
此时分针落后时针60×(180÷360)=30(格),
7点整时分针落后时针5×7=35(格),
因此,从7点整到此时成一直线,分针要比时针多走35-30=5(格),5÷(1)=(分钟)。即小明开始解题的时间是7点分。
(2)小明解题结束的时刻:
从7点整到这一时刻分针要比时针多走5×7=35(格),
35÷(1)=(分钟),即小明解题结束时是7点分;
7点分钟-7点分=(分钟)。
答:小明解题用了分钟。
练习册系列答案
相关题目