题目内容
12.计算(1)$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+…+\frac{1}{210}$
(2)$\frac{4}{7}×23\frac{12}{13}+16×\frac{1}{7}+\frac{1}{7}×\frac{4}{13}$
(3)(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)
分析 (1)把每个分数拆成两个分数相减的形式,然后通过加减相互抵消,求得结果;
(2)通过数字转化,运用乘法分配律简算;
(3)通过观察发现这个算式较长,数据较多,但括号中有重复的数据,因此可设0.12+0.23=x,0.12+0.23+0.34=y,算式就简化为:(1+x)y-(1+y)x由此将算式整理计算即可.
解答 解:(1)$\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+…+\frac{1}{210}$
=1-$\frac{1}{2}$+$\frac{1}{2}$-$\frac{1}{3}$+$\frac{1}{3}$-$\frac{1}{4}$+$\frac{1}{4}$-$\frac{1}{5}$+…$+\frac{1}{14}$-$\frac{1}{15}$
=1-$\frac{1}{15}$
=$\frac{14}{15}$
(2)$\frac{4}{7}×23\frac{12}{13}+16×\frac{1}{7}+\frac{1}{7}×\frac{4}{13}$
=$\frac{4}{7}$×23$\frac{12}{13}$+$\frac{4}{7}$×4+$\frac{4}{7}$×$\frac{1}{13}$
=$\frac{4}{7}$×(23$\frac{12}{13}$+4+$\frac{1}{13}$)
=$\frac{4}{7}$×(24+4)
=$\frac{4}{7}$×28
=16
(3)设0.12+0.23=x,0.12+0.23+0.34=y,则:
(1+0.12+0.23)×(0.12+0.23+0.34)-(1+0.12+0.23+0.34)×(0.12+0.23)
=(1+x)y-(1+y)x
=y+xy-x-xy
=y-x
=(0.12+0.23+0.34)-(0.12+0.23)
=0.12-0.12+0.23-0.23+0.34
=0.34
点评 完成此类题目要认真分析式中数据的特点及内在联系,然后运用合适的方法进行计算.
A. | (8.4÷1.2)÷5 | B. | 8.4÷(1.2÷5) | C. | 8.4÷(1.2×5) |