网址:http://m.1010jiajiao.com/timu_id_98648[举报]
对于解方程x2-2x-3=0的下列步骤:
①设f(x)=x2-2x-3
②计算方程的判别式Δ=22+4×3=16>0
③作f(x)的图象
④将a=1,b=-2,c=-3代入求根公式
x=,得x1=3,x2=-1.
其中可作为解方程的算法的有效步骤为( )
A.①② B.②③
C.②④ D.③④
查看习题详情和答案>>
已知二次函数的二次项系数为,且不等式的解集为,
(1)若方程有两个相等的根,求的解析式;
(2)若的最大值为正数,求的取值范围.
【解析】第一问中利用∵f(x)+2x>0的解集为(1,3),
设出二次函数的解析式,然后利用判别式得到a的值。
第二问中,
解:(1)∵f(x)+2x>0的解集为(1,3),
①
由方程
②
∵方程②有两个相等的根,
∴,
即5a2-4a-1=0,解得a=1(舍) 或 a=-1/5
a=-1/5代入①得:
(2)由
由 解得:
故当f(x)的最大值为正数时,实数a的取值范围是
查看习题详情和答案>>
(x-a)2+(y-b)2 |
x2+8x+20 |
x2-2x+2 |
26 |
已知向量(),向量,,
且.
(Ⅰ)求向量; (Ⅱ)若,,求.
【解析】本试题主要考查了向量的数量积的运算,以及两角和差的三角函数关系式的运用。
(1)问中∵,∴,…………………1分
∵,得到三角关系是,结合,解得。
(2)由,解得,,结合二倍角公式,和,代入到两角和的三角函数关系式中就可以求解得到。
解析一:(Ⅰ)∵,∴,…………1分
∵,∴,即 ① …………2分
又 ② 由①②联立方程解得,,5分
∴ ……………6分
(Ⅱ)∵即,, …………7分
∴, ………8分
又∵, ………9分
, ……10分
∴.
解法二: (Ⅰ),…………………………………1分
又,∴,即,①……2分
又 ②
将①代入②中,可得 ③ …………………4分
将③代入①中,得……………………………………5分
∴ …………………………………6分
(Ⅱ) 方法一 ∵,,∴,且……7分
∴,从而. …………………8分
由(Ⅰ)知, ; ………………9分
∴. ………………………………10分
又∵,∴, 又,∴ ……11分
综上可得 ………………………………12分
方法二∵,,∴,且…………7分
∴. ……………8分
由(Ⅰ)知, . …………9分
∴ ……………10分
∵,且注意到,
∴,又,∴ ………………………11分
综上可得 …………………12分
(若用,又∵ ∴ ,
查看习题详情和答案>>
某车间为了规定工时定额,需要确定加工零件所花费的时间,为此作了四次试验,得到的数据如下:
零件的个数x(个) |
2 |
3 |
4 |
5 |
加工的时间y(小时) |
2.5 |
3 |
4 |
4.5 |
(1)在给定的坐标系中画出表中数据的散点图;
(2)求出y关于x的线性回归方程,并在坐标系中画出回归直线;
(3)试预测加工10个零件需要多少时间?
(注:)
【解析】第一问中利用数据描绘出散点图即可
第二问中,由表中数据得=52.5, =3.5,=3.5,=54,∴=0.7,=1.05得到回归方程。
第三问中,将x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时)得到结论。
(1)散点图如下图.
………………4分
(2)由表中数据得=52.5, =3.5,=3.5,=54,
∴=…=0.7,=…=1.05.
∴=0.7x+1.05.回归直线如图中所示.………………8分
(3)将x=10代入回归直线方程,得y=0.7×10+1.05=8.05(小时),
∴预测加工10个零件需要8.05小时
查看习题详情和答案>>