摘要:令3-r=2,得r=1 , 因此.展开式中含项的系数是-192.
网址:http://m.1010jiajiao.com/timu_id_94845[举报]
14、(1+x)n=Cn0+Cn1x+Cn2x2+…+Cnnxn(x∈N*)(1+x)n=C,上式两边对x求导后令x=1,可得结论:Cn1+2Cn2+…+rCnr+nCnn=n•2n-1,利用上述解题思路,可得到许多结论.试问:Cn0+2Cn1+3Cn2+…+(r+1)Cnr+…+(n+1)Cnn=
查看习题详情和答案>>
(n+2)2n-1
.对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为函数f(x)的不动点,已知f(x)=ax2+(b+1)x+(b-1)(a≠0)
(1)当a=1,b=-2求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异不动点,求a的取值范围;
(3)在(2)的条件下,令g(x)=
+loga
,解关于x的不等式g[x(x-
)]<
.
查看习题详情和答案>>
(1)当a=1,b=-2求函数f(x)的不动点;
(2)若对任意实数b,函数f(x)恒有两个相异不动点,求a的取值范围;
(3)在(2)的条件下,令g(x)=
| 1 |
| x+2 |
| 1+x |
| 1-x |
| 1 |
| 2 |
| 1 |
| 2 |
已知x,y∈R+,且x+y=2,求
+
的最小值;给出如下解法:由x+y=2得2≥2
①,即
≥1②,又
+
≥2
③,由②③可得
+
≥2
,故所求最小值为2
.请判断上述解答是否正确
查看习题详情和答案>>
| 1 |
| x |
| 2 |
| y |
| xy |
| 1 | ||
|
| 1 |
| x |
| 2 |
| y |
|
| 1 |
| x |
| 2 |
| y |
| 2 |
| 2 |
不正确
不正确
,理由①和③不等式不能同时取等号.
①和③不等式不能同时取等号.
.