摘要:(Ⅱ)设.求证:数列中任意不同的三项都不可能成为等比数列.
网址:http://m.1010jiajiao.com/timu_id_86951[举报]
若数列{an}是首项为6-12t,公差为6的等差数列;数列{bn}的前n项和为Sn=3n-t.
(1)求数列{an}和{bn}的通项公式;
(2)若数列{bn}是等比数列,试证明:对于任意的n(n∈N,n≥1),均存在正整数Cn,使得bn+1=a
,并求数列{cn}的前n项和Tn;
(3)设数列{dn}满足dn=an•bn,且{dn}中不存在这样的项dt,使得“dk<dk-1与dk<dk+1”同时成立(其中k≥2,k∈N*),试求实数t的取值范围.
查看习题详情和答案>>
(1)求数列{an}和{bn}的通项公式;
(2)若数列{bn}是等比数列,试证明:对于任意的n(n∈N,n≥1),均存在正整数Cn,使得bn+1=a
(3)设数列{dn}满足dn=an•bn,且{dn}中不存在这样的项dt,使得“dk<dk-1与dk<dk+1”同时成立(其中k≥2,k∈N*),试求实数t的取值范围.
查看习题详情和答案>>
若数列{an}是首项为6-12t,公差为6的等差数列;数列{bn}的前n项和为Sn=3n-t.
(1)求数列{an}和{bn}的通项公式;
(2)若数列{bn}是等比数列,试证明:对于任意的n(n∈N,n≥1),均存在正整数Cn,使得bn+1=a
,并求数列{cn}的前n项和Tn;
(3)设数列{dn}满足dn=an•bn,且{dn}中不存在这样的项dt,使得“dk<dk-1与dk<dk+1”同时成立(其中k≥2,k∈N*),试求实数t的取值范围.
查看习题详情和答案>>
(1)求数列{an}和{bn}的通项公式;
(2)若数列{bn}是等比数列,试证明:对于任意的n(n∈N,n≥1),均存在正整数Cn,使得bn+1=a
(3)设数列{dn}满足dn=an•bn,且{dn}中不存在这样的项dt,使得“dk<dk-1与dk<dk+1”同时成立(其中k≥2,k∈N*),试求实数t的取值范围.
查看习题详情和答案>>