摘要:2.重视通性通法.加强解题指导.提高解题能力 在二轮复习中.不能仅仅复习概念和性质.还应该以典型的例题和习题(可以选用04年的各地高考试题和近两年的各地高考模拟试题)为载体.在二轮复习中强化各类问题的常规解法.使学生形成解决各种类型问题的操作范式.数学学习是学生自主学习的过程.解题能力只有通过学生的自主探究才能掌握.所以.在二轮复习中.教师的作用是对学生的解题方法进行引导.点拨和点评.只有这样.才能够实施有效复习.
网址:http://m.1010jiajiao.com/timu_id_78030[举报]
已知正项数列的前n项和满足:,
(1)求数列的通项和前n项和;
(2)求数列的前n项和;
(3)证明:不等式 对任意的,都成立.
【解析】第一问中,由于所以
两式作差,然后得到
从而得到结论
第二问中,利用裂项求和的思想得到结论。
第三问中,
又
结合放缩法得到。
解:(1)∵ ∴
∴
∴ ∴ ………2分
又∵正项数列,∴ ∴
又n=1时,
∴ ∴数列是以1为首项,2为公差的等差数列……………3分
∴ …………………4分
∴ …………………5分
(2) …………………6分
∴
…………………9分
(3)
…………………12分
又
,
∴不等式 对任意的,都成立.
查看习题详情和答案>>
我们已学过的算法有求解一元二次方程的求根公式,加减消元法求二元一次方程组解,二分法求函数零点等.对算法的描述有
①对一类问题都有效;
②对个别问题有效;
③计算可以一步步地进行,每一步都有惟一的结果;
④是一种通法,只要按部就班地做,总能得到结果.
以上正确描述算法的有
- A.1个
- B.2个
- C.3个
- D.4个
阅读下面所给材料:已知数列{an},a1=2,an=3an-1+2,求数列的通项an.
解:令an=an-1=x,则有x=3x+2,所以x=-1,故原递推式an=3an-1+2可转化为:
an+1=3(an-1+1),因此数列{an+1}是首项为a1+1,公比为3的等比数列.
根据上述材料所给出提示,解答下列问题:
已知数列{an},a1=1,an=3an-1+4,
(1)求数列的通项an;并用解析几何中的有关思想方法来解释其原理;
(2)若记Sn=
,求
Sn;
(3)若数列{bn}满足:b1=10,bn+1=100bn3,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{bn}的通项公式bn. 查看习题详情和答案>>
解:令an=an-1=x,则有x=3x+2,所以x=-1,故原递推式an=3an-1+2可转化为:
an+1=3(an-1+1),因此数列{an+1}是首项为a1+1,公比为3的等比数列.
根据上述材料所给出提示,解答下列问题:
已知数列{an},a1=1,an=3an-1+4,
(1)求数列的通项an;并用解析几何中的有关思想方法来解释其原理;
(2)若记Sn=
n |
k=1 |
1 |
lg(ak+2)lg(ak+1+2) |
lim |
n→∞ |
(3)若数列{bn}满足:b1=10,bn+1=100bn3,利用所学过的知识,把问题转化为可以用阅读材料的提示,求出解数列{bn}的通项公式bn. 查看习题详情和答案>>