摘要:分类原则:分类对象确定.标准统一.不重复.不遗漏.分层次.不越级讨论.
网址:http://m.1010jiajiao.com/timu_id_77799[举报]
已知函数
, 其中
.
(1)当
时,求曲线
在点
处的切线方程;
(2)当
时,求曲线
的单调区间与极值.
【解析】第一问中利用当
时,
,![]()
,得到切线方程
第二问中,![]()
![]()
对a分情况讨论,确定单调性和极值问题。
解: (1) 当
时,
,![]()
………………………….2分
切线方程为:
…………………………..5分
(2) ![]()
…….7
分
分类: 当
时, 很显然
的单调增区间为:
单调减区间:
,![]()
,
………… 11分
当
时
的单调减区间:
单调增区间:
,
![]()
, ![]()
查看习题详情和答案>>
某校学习小组开展“学生语文成绩与外语成绩的关系”的课题研究,对该校高二年级800名学生上学期期末语文和外语成绩,按优秀和不优秀分类得结果:语文和外语都优秀的有60人,语文成绩优秀但外语不优秀的有140人,外语成绩优秀但语文不优秀的有100人.
请画出列联表,并判断能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?
K2=
.
查看习题详情和答案>>
请画出列联表,并判断能否在犯错概率不超过0.001的前提下认为该校学生的语文成绩与外语成绩有关系?
| P(K2≥k0) | 0.010 | 0.005 | 0.001 |
| k0 | 6.635 | 7.879 | 10.828 |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
某学校课题组为了研究学生的数学成绩与物理成绩之间的关系,随机抽取高二年级20名学生某次考试成绩(满分100分)如下表所示:
若单科成绩85分以上(含85分),则该科成绩为优秀.
(1)根据上表完成下面的2×2列联表(单位:人):
(2)根据题(1)中表格的数据计算,有多大的把握,认为学生的数学成绩与物理成绩之间有关系?
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和y1,y2,其样本频数列联表(称为2×2列联表)为:
则随机变量K2=
,其中n=a+b+c+d为样本容量;
②独立检验随机变量K2的临界值参考表:
查看习题详情和答案>>
| 序号 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 |
| 数学成绩 | 95 | 75 | 80 | 94 | 92 | 65 | 67 | 84 | 98 | 71 | 67 | 93 | 64 | 78 | 77 | 90 | 57 | 83 | 72 | 83 |
| 物理成绩 | 90 | 63 | 72 | 87 | 91 | 71 | 58 | 82 | 93 | 81 | 77 | 82 | 48 | 85 | 69 | 91 | 61 | 84 | 78 | 86 |
(1)根据上表完成下面的2×2列联表(单位:人):
| 数学成绩优秀 | 数学成绩不优秀 | 合 计 | |
| 物理成绩优秀 | |||
| 物理成绩不优秀 | |||
| 合 计 | 20 |
参考数据:
①假设有两个分类变量X和Y,它们的值域分别为{x1,x2}和y1,y2,其样本频数列联表(称为2×2列联表)为:
| y1 | y2 | 合计 | |
| x1 | a | b | a+b |
| x2 | c | d | c+d |
| 合计 | a+c | b+d | a+b+c+d |
| n(ad-bc)2 |
| (a+b)(c+d)(a+c)(b+d) |
②独立检验随机变量K2的临界值参考表:
| P(K2≥k0) | 0.50 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k0 | 0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |