摘要: C 提示:由可知.z2对应的点在以(0.0)为圆心.以2为半径的圆上. 而 表示复数对应的点的距离. 结合图形.易知.此距离的最大值为:
网址:http://m.1010jiajiao.com/timu_id_77786[举报]
已知m>1,直线,椭圆C:,、分别为椭圆C的左、右焦点.
(Ⅰ)当直线过右焦点时,求直线的方程;
(Ⅱ)设直线与椭圆C交于A、B两点,△A、△B的重心分别为G、H.若原点O在以线段GH为直径的圆内,求实数m的取值范围.[
【解析】第一问中因为直线经过点(,0),所以=,得.又因为m>1,所以,故直线的方程为
第二问中设,由,消去x,得,
则由,知<8,且有
由题意知O为的中点.由可知从而,设M是GH的中点,则M().
由题意可知,2|MO|<|GH|,得到范围
查看习题详情和答案>>
给出下列四个命题:
①若△ABC三边为a,b,c,面积为S,内切圆的半径r=
,则由类比推理知四面体ABCD的内切球半径R=
(其中,V为四面体的体积,S1,S2,S3,S4为四个面的面积);
②若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是
=1.23x+0.08;
③若偶函数f(x)(x∈R)满足f(x+2)=f(x),且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|有3个根.
④若圆C1:x2+y2+2x=0,圆C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中,正确命题的序号是
查看习题详情和答案>>
①若△ABC三边为a,b,c,面积为S,内切圆的半径r=
2S |
a+b+c |
3V |
S1+S2+S3+S4 |
②若回归直线的斜率估计值是1.23,样本点的中心为(4,5),则回归直线方程是
y |
③若偶函数f(x)(x∈R)满足f(x+2)=f(x),且x∈[0,1]时,f(x)=x,则方程f(x)=log3|x|有3个根.
④若圆C1:x2+y2+2x=0,圆C2:x2+y2+2y-1=0,则这两个圆恰有2条公切线.
其中,正确命题的序号是
①②④
①②④
.(把你认为正确命题的序号都填上)